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ABSTRACT

A skyrmionium is a magnetic texture composed of two skyrmions with opposite winding numbers (Q) and different sizes. Compared to a
skyrmion, a skyrmionium can move at a higher velocity. However, a moving skyrmionium may still deform because of the local skyrmion
Hall effect resulting from the two skyrmions with opposite Q. In this study, we propose a skyrmionium motion with negligible deformation
in a synthetic antiferromagnetic (AFM) medium, composed of a free ferromagnetic (FM) layer with a skyrmionium and a pinned FM layer
with uniform magnetization. The suppression of the skyrmionium deformation is due to the enhanced coupling between the inner and outer
skyrmion under interlayer AFM coupling. This study paves the way for the development of devices with high stability, high processing
speed, and small sizes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0095984

A skyrmion is a circular magnetic texture with nontrivial topo-
logical properties and small size (10–100nm).1 Skyrmions exhibit
potential applications in the field of information techniques and have
been widely investigated in recent years.2–8 However, several chal-
lenges remain for skyrmion-based devices. A typical example is the
skyrmion Hall effect (SkHE), which originates from the nonzero topo-
logical charge of a skyrmion. This SkHE gives rise to a transversal
velocity for a skyrmion moving along a nanowire,6,9–11 which in turn
increases the risk of annihilation.9,11–13

To depress SkHEs, many efforts have been made to fabricate a
composite composed of two skyrmions with opposite topological
numbers. In addition to coupled skyrmions with opposite winding
numbers (Q, þ1, or �1) and same size in a synthetic antiferromag-
netic (SAF) structure,14 a skyrmionium is another composite of two
skyrmions with opposite topological charges and different sizes.13

Since it was first observed in 2013,15 several studies have shown that a

ferromagnetic (FM) skyrmionium can be created by a spin-polarized
current,10 magnetic field pulses,16 or strain mediation.17 Also, a sky-
rmionium can be induced to move under a spin-transfer torque
(STT), spin–orbit torque (SOT), or spin wave.18–26

Given that the total topological charge of a skyrmionium is zero,
one may expect the absence of SkHE. However, local SkHE for two
skyrmions with opposite Q still matters, because it can lead to trans-
versal motion of both skyrmions in opposite directions. This can
deform and even disintegrate a skyrmionium under a strong driving
force. Therefore, stabilizing the moving skyrmionium remains a criti-
cal problem. It is noteworthy that both skyrmions in a skyrmionium
are not independent, and there is magnetostatic and exchange cou-
pling between them, which plays an important role in controlling the
deformation of a skyrmionium. Therefore, manipulation of the inter-
actions between both skyrmions may be a key for stabilizing a
skyrmionium.
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In this Letter, we report our numerical investigation on skyrmio-
nium motion driven by STT and SOT in an SAF nanostructure with
Ruderman–Kittel–Kasuya–Yosida (RKKY) AFM exchange coupling
between both FM layers. A skyrmionium is generated in the free layer
with low anisotropy energy, whereas the magnetization in the pinned
layer with high anisotropy energy is spatially homogenous. The sky-
rmionium is driven by STT or SOT under an injected current
[Fig. 1(a)]. We show that the skyrmionium can move along the middle
line of the nanotrack without distortion under moderate RKKY
exchange coupling. The suppressed deformation is attributed to
enhanced exchange coupling between the two skyrmions under RKKY
coupling. This study paves the way for the design of future skyrmionic
applications with improved stability, high reading speed, and small
sizes.

We consider an SAF multilayer composed of a free FM layer, a
pinned FM layer, and a nonmagnetic layer which is the medium for
RKKY coupling. We first studied the stability of a skyrmionium in an
SAF nanodisk and then investigated the skyrmionium motion in an
SAF nanotrack. The radius (R) of the nanodisk was 200nm, whereas
the thicknesses of the FM and nonmagnetic layers were all 0.4 nm
with a cell dimension of 1� 1� 0.4 nm3. The size of the nanotrack
was as follows: The length and width of the nanotrack were 1100 and
200nm, respectively. Both FM layers had the same thickness (0.4 nm),
and the distance between them was 0.4 nm along with a cell size of
2� 2� 0.4 nm3.

Skyrmionium motion was simulated using object-oriented
micromagnetic framework (OOMMF) software containing a code of
interfacial Dzyaloshinskii–Moriya interaction (DMI).27 The simulation
was based on numerically solving the Landau–Lifshitz–Gilbert (LLG)
equation containing both STT and SOT terms28,29

@~m
@t
¼ �c0~m � ~Heff þ a ~m � @~m

@t

� �

þ
u~m � ~m � @~m

@x

� �
þ bu~m � @~m

@x
STT term

þ cHSO~m � ~r � ~mð Þ
SOT term

:

(1)

Here, ~m, t, and c are the unit magnetization vector, time, and gyro-
magnetic ratio of the electrons, respectively. The first and second terms
on the right-hand side of Eq. (1) contribute to the torque from the
effective magnetic field ~Heff and Gilbert damping, respectively. The
third and fourth terms depict adiabatic and non-adiabatic STTs,

respectively. The velocity of the electron u can be estimated using
u ¼ JPglB

2eMs
, where J is the current density, P is the polarization rate, g is

the Land�e factor, lB is the Bohr magneton, and e is the electron charge.

Hso is the SOT effective field: Hso ¼ lBhSH J
c0eMsa

, where hSH is the spin Hall

angle and a is the thickness of the free FM layer. The parameter c0 is
related to c by c0 ¼ l0 cj j.

We exploited the parameters of a Pt/Co system with perpendicu-
lar magnetic anisotropy.4,30–33 The saturation magnetization (MS) and
exchange stiffness constant (A) were 5.8� 105 A/m and 1.5� 10�11

J/m, respectively. The DMI constant (D) was 1 and 4 mJ/m2. The
anisotropy constant for the lower pinned FM layer (Klow) was 5� 106

J/m3, and that of the upper free layer (Kup) varied between 1� 105 and
6� 105 J/m3. P¼ 0.7. The damping coefficient was a¼0.2, and the
coefficient of the non-adiabatic STT was b¼0.4.

First, we considered the stability of a skyrmionium in an SAF
nanodisk. Without interlayer RKKY coupling, the skyrmionium could
be stabilized within 2 ns. The inner and outer diameters were 90 and
150 nm, respectively [Fig. 2(a)]. Under interlayer RKKY exchange cou-
pling with Jex¼�5� 10�5 J/m2, the inner and outer diameters were
reduced to 19 and 34nm, respectively [Fig. 2(b)].

Stabilization of a skyrmionium results from a trade-off among
different free energies. Figures 2(c) and 2(d) show the evolution of free
energies during relaxation. In the absence of RKKY coupling, the
demagnetization energy (Edem), exchange energy (Eexc), and DMI
energy (Edmi) decreased and approached constant values quickly, while
the uniaxial perpendicular anisotropy energy (Eanis) increased. In con-
trast, under RKKY coupling, the decrease in the RKKY AFM exchange
energy (ERKKY) mainly contributed to the stabilization of the skyrmio-
nium. In principle, the lowest ERKKY corresponds to perfect antiparallel
alignment of the magnetization in both FM layers. This annihilates a
skyrmionium. However, Eexc between the inner and outer skyrmions
increases when they approach each other, and this energy barrier of
Eexc suppresses the deformation and annihilation of the skyrmionium.
Therefore, a stable small skyrmionium can still be formed under com-
petition between ERKKY and Eexc.

We simulated the skyrmionium motion driven by the STT and
SOT in an SAF nanotrack as shown in Fig. 1 [Figs. 3(a) and 3(d)]. For
comparison, we also studied the STT and SOT-induced skyrmionium
motion in a single FM layer [Figs. 3(b) and 3(e)] and the skyrmion
motion driven by STT and SOT in an SAF nanotrack [Figs. 3(c)
and 3(f)]. At Jex¼�5� 10�6 J/m2, under both STT and SOT, the sky-
rmionium was able to move strictly along the middle line of the SAF
track with negligible deformation [Figs. 3(a) and 3(d)]. In comparison,

FIG. 1. (a) Schematic of an SAF nanowire composed of a free FM layer with a small magnetic anisotropy constant and a pinned FM layer with a large one. (The skyrmionium
exists in the upper free FM layer, and its motion is induced by the STT effect under an injected current.) (b) Motion of a skyrmionium with negligible dislocation in the SAF
nanowire shown in (a).
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in the absence of RKKY exchange coupling, the skyrmionium signifi-
cantly dislocated due to the transversal deviation of the inner and
outer skyrmions toward opposite directions [Figs. 3(b) and 3(e)].
Concerning the skyrmion driven by the STT and SOT in the SAF track
with Jex¼�5� 10�6 J/m2, the skyrmion deviated toward the track
edge owing to the SkHE [Figs. 3(c) and 3(f)].

Skyrmionium deformation is influenced by the interaction
between the two skyrmions forming the skyrmionium. As shown in
Fig. 2, under interlayer RKKY exchange coupling, the contraction of
the skyrmionium can enhance this interaction between both sky-
rmions, which suppresses the dislocation of the skyrmionium.

Based on the results in Fig. 3, we conclude that RKKY exchange
coupling contributes to the stability of a skyrmionium driven by both
STT and SOT. We further studied the manipulation of the longitudi-
nal velocity (vx) of the skyrmionium. Note that vx is proportional to J
under both STT and SOT, and RKKY coupling clearly improves the
stability of the skyrmionium [Figs. 4(a) and 4(b)]. Without RKKY cou-
pling, deformation occurred under small current density (J¼ 5� 1012

A/m2 for STT and J¼ 3� 109 A/m2 for SOT). However, under mod-
erate RKKY coupling with Jex¼ 5� 10�6 J/m2, the deformation was
significantly suppressed. Regarding STT, the skyrmionium kept stable
when J was as high as 1013 A/m2. For SOT, the skyrmionium
deformed and broke down when J was greater than 3� 1010 and
5� 1010 A/m2, respectively. Both are significantly higher values than
those without RKKY coupling.

Figures 4(c) and 4(d) show the variation in vx as a function of Jex
at J¼ 8� 1012 A/m2 for STT and J¼ 5� 109 A/m2 for SOT. The sky-
rmionium slowly moved under weak RKKY coupling due to deforma-
tion, and vx reached its maximum value when Jex was�1� 10�6 J/m2.
Under stronger RKKY coupling, the change in vx for STT was very
small, whereas vx for SOT clearly decreased. This indicates that moder-
ate RKKY exchange coupling plays a key role in stabilizing the sky-
rmionium driven by either STT or SOT, which allows the
skyrmionium to move at high velocities.

In theory, the motion of a rigid magnetic texture driven by STT
and SOT can be analyzed by Thiele equations34

~G �~vSOT � aD �~vSOT þ 4pB �~j þ~F ¼ 0; (2)

~G � ~vSTT �~uð Þ þD � b~u � a~vSTT
� �

þ~F ¼ 0: (3)

In Eqs. (2) and (3), ~G ¼ 0; 0; 4pQð Þ is the gyromagnetic factor,

~vSOTðSTTÞ ¼ vSOTðSTTÞx ; vSOTðSTTÞy

� �
is the texture velocity, and

~j ¼ j; 0ð Þ is the driving current density.D ¼ 4p
Dxx Dxy

Dyx Dyy

� �
is the

dissipative force tensor with components Dij ¼ 1
4p

Ð
@m
@i � @m

@j dxdy.

B ¼ u
aJ

�Ixy Ixx
�Iyy Iyx

� �
is the driving force tensor of SOT with the

FIG. 2. Profile of a stable skyrmionium with (a) Jex¼ 0 J/m2 and (b) Jex¼�5� 10�5 J/m2; (c) evolution of magnetic free energies for a skyrmionium with (c) and without (d)
antiferromagnetic exchange interaction (Jex¼�5� 10�5 J/m2 or 0 J/m2, D¼ 3 mJ/m2, Kup¼ 4� 105 J/m2, and Klow¼ 3� 106 J/m2).
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components Iij ¼ 1
4p

Ð
@m
@i �m
� �

j
dxdy, a is 0.4� 10�9 m, the thick-

ness.~F stands for the force from the edge of the nanowire.
Because of the trivial topological properties of the skyrmio-

nium, the first terms in Eqs. (2) and (3) can be ignored. In addition,
owing to the absence of SkHE, the skyrmionium moves strictly along
the middle line, and the total boundary force acting on the skyrmio-
nium is zero. Therefore, the boundary force terms in Eqs. (2) and (3)
are ignored. Under these circumstances, vx for steady motion can be
derived as follows:

vSOTx ¼
uIxy
aaDxx

(4)

and

vSTTx ¼ bu
a
: (5)

Equations (4) and (5) reveal that the velocity of the skyrmionium
driven by STT is related to the velocity of the propagating electrons
and magnetic parameters a and b. Therefore, when the interlayer cou-
pling is strong enough to suppress the deformation, the skyrmionium
velocity reaches a stable value. Further reduction in the skyrmionium
size under stronger RKKY coupling does not influence the velocity

[Fig. 4(c)]. However, under SOT, the skyrmionium velocity also
depends on Ixy and Dxx, which are related to the magnetization struc-
ture of the skyrmionium. The reduction in the skyrmionium size
under strong RKKY coupling results in a decrease in Ixy and Dxx [the
inset of Fig. 4(d)]. However, the decrease in Ixy is dominant over that
of Dxx, which leads to decreased Ixy/Dxx and skyrmionium velocity.
Based on Eqs. (4) and (5), we calculated the skyrmionium velocity
when Jex was larger than that for the maximum velocity. (The sky-
rmionium deformation under a smaller Jex invalids Thiele equations.)
The calculated results are close to that obtained by OOMMF simula-
tion [Figs. 4(c) and 4(d)].

Finally, we briefly discuss potential applications of this study.
Coupled skyrmion systems, such as skyrmionium and AFM coupled
skyrmions in an SAF system, may contribute to the suppression of
SkHE. However, a skyrmionium still deforms owing to the local
SkHE, and in an SAF system, the cancelation of the magnetization in
AFM-coupled skyrmions increases the difficulty for detecting sky-
rmions.32,35 In this study, RKKY coupling between the skyrmionium
and the pinned FM layer clearly improved the stability of skyrmio-
nium. Nevertheless, the magnetization of the two layers was not can-
celed owing to the uniform magnetization in the pinned FM layer.
Therefore, the proposed method provides a possible route for stabiliz-
ing a skyrmionium without sacrificing readability.

FIG. 3. Snapshots of skyrmionium motion driven by (a) STT and (d) SOT with Jex¼�5� 10�6 J/m2. Snapshots of skyrmionium motion driven by (b) STT and (e) SOT with
Jex¼ 0 J/m2. Snapshots of skyrmion motion triggered by (c) STT and (f) SOT with Jex¼�5� 10�6 J/m2. (D¼ 3.5 mJ/m2, Kup¼ 5� 105 J/m2, Klow¼ 5� 106 J/m2. Current
densities of STT and SOT: JSTT¼ 8� 1012 A/m2 and JSOT¼ 5� 109 A/m2).
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In summary, we investigated STT- and SOT-induced skyrmio-
nium motion with negligible deformation in an SAF nanodisk under
moderate RKKY AFM exchange coupling between the two FM layers.
This absence of deformation results from the enhanced interaction
between the two skyrmions comprising the skyrmionium under the
RKKY coupling. Owing to this RKKY exchange coupling, the sky-
rmionium can move at high velocities (>150 m/s) with small size.
These advantages pave the way for developing potential skyrmionium
devices with high density, high processing speed, and good stability
such as skyrmionium-based racetrack memory and artificial synaptic
devices for neuromorphic computing.
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