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Negative capacitance in a ferroelectric capacitor
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The Boltzmann distribution of electrons poses a fundamental
barrier to lowering energy dissipation in conventional elec-
tronics, often termed as Boltzmann Tyranny1–5. Negative
capacitance in ferroelectric materials, which stems from the
stored energy of a phase transition, could provide a solution,
but a direct measurement of negative capacitance has so far
been elusive1–3. Here, we report the observation of negative
capacitance in a thin, epitaxial ferroelectric film. When a
voltage pulse is applied, the voltage across the ferroelectric
capacitor is found to be decreasing with time—in exactly the
opposite direction to which voltage for a regular capacitor
should change. Analysis of this ‘inductance’-like behaviour
from a capacitor presents an unprecedented insight into the
intrinsic energy profile of the ferroelectric material and could
pave the way for completely new applications.

Owing to the energy barrier that forms during the phase
transition and separates the two degenerate polarization states, a
ferroelectric material could show negative differential capacitance
while in non-equilibrium1–5. The state of negative capacitance is
unstable, but just as a series resistance can stabilize the negative
differential resistance of an Esaki diode, it is also possible to
stabilize a ferroelectric in the negative differential capacitance state
by using a series dielectric capacitor1–3. In this configuration, the
ferroelectric acts as a ‘transformer’ that boosts the input voltage. The
resulting amplification could lower the voltage needed to operate
a transistor below the limit otherwise imposed by the Boltzmann
distribution of electrons1–5. For this reason, the possibility of a
transistor that exploits negative differential capacitance has been
widely studied in recent years6–15. However, despite the fact that
negative differential capacitance has been predicted by the standard
Landau model going back to the early days of ferroelectricity16–20,
a direct measurement of this effect has never been reported. In
this work, we demonstrate a negative differential capacitance in a
thin, single-crystalline ferroelectric film, by constructing a simple
R–C network and monitoring the voltage dynamics across the
ferroelectric capacitor.

We start by noting that capacitance is, by definition, a small
signal concept—capacitance C at a given charge QF is related to the
potential energyU by the relationC=[d2U /dQF

2
]
−1. For this reason

we shall henceforth use the term ‘negative capacitance’ to refer to
‘negative differential capacitance’. For a ferroelectric material, as
shown in Fig. 1a, the capacitance is negative only in the barrier
region around QF=0. Starting from an initial state P , as a voltage
is applied across the ferroelectric capacitor, the energy landscape is
tilted and the polarization will move to the nearest local minimum.
Figure 1b shows this transition for a voltage that is smaller than the
coercive voltageVc. If the voltage is larger thanVc, one of theminima
disappears and QF moves to the remaining minimum of the energy

landscape (Fig. 1c). Notably, as the polarization state descends in
Fig. 1c, it passes through the region where C=[d2U /dQF

2
]
−1< 0.

Therefore, while switching from one stable polarization to the
other, a ferroelectric material passes through a region where the
differential capacitance is negative.

To experimentally demonstrate the above, we applied voltage
pulses across a series combination of a ferroelectric capacitor and
a resistor R and observed the time dynamics of the ferroelectric po-
larization. A 60 nm film of ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT) was
grown on metallic SrRuO3 (60 nm)-buffered SrTiO3 substrate using
the pulsed laser deposition technique. Square gold top electrodes
with a surface area A= (30 µm)2 were patterned on top of the PZT
films using standard micro-fabrication techniques. The remnant
polarization of the PZT film is measured to be ∼ 0.74Cm−2 and
the coercive voltages are roughly +2.1V and −0.8V. A resistance
value R= 50 k� is used as the series resistor. Figure 2a shows the
schematic diagram of the experimental set-up and Fig. 2b shows the
equivalent circuit diagram. The capacitor C connected in parallel
with the ferroelectric capacitor in Fig. 2b represents the parasitic
capacitance contributed by the probe station and the oscilloscope
in the experimental set-up, which was measured to be ∼ 60 pF.
An a.c. voltage pulse sequence of VS: −5.4V→+5.4V→−5.4V
was applied as input. The total charge in the ferroelectric and
parasitic capacitors at a given time t , Q(t), is calculated using
Q(t)=

∫ t
0 iR(t)dt , with iR being the current flowing through R. The

charge across the ferroelectric capacitorQF(t) is calculated using the
relation:QF(t)=Q(t)−CVF(t), withVF being the voltagemeasured
across the ferroelectric capacitor. Figure 2c shows the transients
corresponding to VS, VF, iR and Q. We note in Fig. 2c that after the
−5.4V→+5.4V transition of VS, VF increases until point A, after
which it decreases until point B. We also note in Fig. 2c that, during
the same time segment AB, iR is positive and Q increases. In other
words, during the time segment AB, the changes in VF and Q have
opposite signs. As such, dQ/dV F is negative during AB, indicating
that the ferroelectric polarization is passing through the unstable
states. A similar signature of negative capacitance is observed after
the +5.4V→−5.4V transition of VS during the time segment
CD in Fig. 2c. The charge density of the ferroelectric capacitor
or the ferroelectric polarization, P(t)=QF(t)/A, is plotted as a
function of VF(t) in Fig. 3a, from which we can observe in that the
P(t)–VF(t) curve is hysteretic, and for sections AB andCD the slope
of the curve is negative, indicating that the capacitance is negative
in these regions.

We also experimented with a.c. voltage pulses of different
amplitudes and two different values of the series resistance. The
P(t)–VF(t) characteristic is found to be qualitatively similar (see
Supplementary Section 2 for detailed measurements). There are,
however, some interesting differences. For example, Fig. 3b shows
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Figure 1 | Energy landscape description of the ferroelectric negative capacitance. a, Energy landscape U of a ferroelectric capacitor in the absence of an
applied voltage. The capacitance C is negative only in the barrier region around charge QF=0. b,c, Evolution of the energy landscape on the application of a
voltage across the ferroelectric capacitor that is smaller (b) or greater (c) than the coercive voltage Vc. If the voltage is greater than the coercive voltage,
the ferroelectric polarization descends through the negative capacitance states. P, Q and R represent di�erent polarization states in the energy landscape.
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Figure 2 | Transient response of a ferroelectric capacitor. a, Schematic diagram of the experimental set-up. b, Equivalent circuit diagram of the
experimental set-up. CF,C and R represent the ferroelectric and the parasitic capacitor and the external resistor, respectively. VS, VF and iR are the source
voltage, the voltage across CF and the current through R, respectively. c, Transients corresponding to the source voltage VS, the ferroelectric voltage VF and
the charge Q on the application of an a.c. voltage pulse VS:−5.4V→+5.4V→−5.4V. R=50 k�. Negative capacitance transients are observed during
the time segments AB and CD. The source voltage pulse is shown as the line connecting open circles and transients as the lines connecting green circles.
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Figure 3 | Experimental measurement of negative capacitance. a, Ferroelectric polarization P(t) as a function of VF(t) with R=50 k� for
VS:−5.4V→+5.4V→−5.4V. In sections AB and CD, the slope of the P(t)−VF(t) curve is negative, indicating a negative capacitance in these regions.
b, Comparison of the P(t)−VF(t) curves corresponding to R=50 k� and 300 k� for VS:−5.4V→+5.4V→−5.4V.

a comparison of the P(t)–VF(t) curves corresponding to R=50 k�
and 300 k� for VS: −5.4V→+5.4V→−5.4V. We note that
for a smaller value of R the hysteresis loop is wider, which we
discuss later.

We simulated the experimental circuit shown in Fig. 2b, starting
from the Landau–Khalatnikov equation16,

ρ
dQF

dt
=−

dU
dQF

(1)

where the energy density U = αQ2
F + βQ4

F + γQ6
F − QFVF. α, β

and γ are the anisotropy constants and ρ is a material dependent
parameter that accounts for dissipative processes during the
ferroelectric switching. Equation (1) leads to an expression for the
voltage across the ferroelectric capacitor:

VF=
QF

CF(QF)
+ρ

dQF

dt
(2)

where CF(QF)= (2αQF+4βQ3
F+6γQ5

F)
−1. From equation (2), we

note that the equivalent circuit for a ferroelectric capacitor consists
of an internal resistor ρ and a nonlinear capacitorCF(QF) connected
in series. We shall denote QF/CF(QF) as the internal ferroelectric
node voltage Vint. Figure 4a shows the corresponding equivalent
circuit. The transients in the circuit were simulated by solving
equation (2). Figure 4b shows the transients corresponding to VS,
VF, Vint, iR and Q on the application of a voltage pulse VS:−14V→
+14V→−14V with R= 50 k� and ρ = 50 k�. In Fig. 4b, we
observe opposite signs of changes in VF and Q during the time
segments AB and CD, as was seen experimentally in Fig. 2b. We
also note that the P–VF curve shown in Fig. 4c is hysteretic, as was
observed experimentally in Fig. 2d. To understand the difference
between the P–VF and P–Vint curves we note that VF=Vint+ iFρ,
with iF being the current through the ferroelectric branch; the
additional resistive voltage drop, iFρ, results in the hysteresis in the
P–VF curve. Nevertheless, it is clear from Fig. 4c that the negative
slope of the P–Vint curve in a certain range of P , due to CF being
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Figure 4 | Simulation of the time dynamics of the ferroelectric switching. a, Equivalent circuit diagram of the simulation. CF,ρ,C and R represent the
ferroelectric capacitor, the internal resistor, the parasitic capacitor and the external resistor, respectively. VS, Vint and VF are the voltages across the source
and the capacitors CF and C, respectively. iR, iF and iC are the currents through R, CF and C, respectively. b, Simulated transients corresponding to the source
voltage VS, the ferroelectric voltage VF and the charge Q on the application of a voltage pulse VS:−14V→+14V→−14V. c, Ferroelectric polarization P(t)
as a function of VF(t) and Vint(t). d, Comparison of the simulated P(t)–VF(t) curves for R=50 k� and 200 k� on the application of VS:
−14V→+14V→−14V.

negative in that range, is reflected by the negative slope in the P–VF
curve in the segments AB and CD.

We also simulated the transients for the same circuit with
R=200 k� for VS: −14V→+14V→−14V. Figure 4d compares
the simulated P–VF curves for R=50 k� and 200 k�. We observe
that, for a smaller value of R, the hysteresis loop of the simulated
P–VF curve is wider, as was observed experimentally in Fig. 3b.
This is due to the fact that, for a larger R, the current through the
ferroelectric is smaller, resulting in a smaller voltage drop across ρ.
The value of the internal resistance ρ can be extracted by comparing
experimentally measured P–VF curves for two different values of R
for the same voltage pulse: ρ(P) = (VF1(P) − VF2(P))/(iF1(P) −
iF2(P)). Here VF(P) and iF(P) are the voltage across and the current
through the ferroelectric material, respectively. Indices 1 and 2
denote values for two different values of R. The average value of
ρ is found to decrease monotonically from a value of ∼15 k� with
an increasing amplitude of the applied voltage, whereas the average
magnitude of the negative capacitance remains reasonably constant

within the range 400–500 pF (Supplementary Fig. 17). Interestingly,
this value of the negative capacitance is similar to that extracted by
stabilizing PZT in a negative capacitance state by an in-series STO
capacitor9 (Supplementary Section 8).

If the applied voltage amplitude is smaller than the coercive
voltage, such that the ferroelectric lies in one of the potential
wells (Fig. 1a), its capacitance is positive and so it should behave
just like a simple capacitor. On the other hand, if the applied
voltage amplitude is larger than the coercive voltage, the ferroelectric
switches and a negative capacitance transient is expected. This
is exactly what is observed in our experiments (Supplementary
Section 4.3). The fact that in the same circuit both positive and
negative capacitance transients can be achieved just by changing
the amplitude of the voltage also indicates that any influence of
the parasitic components, if present, is minimal. Also, detailed
measurements (Supplementary Section 3) show that the influence
of defects is also minimal. Furthermore, the observed effect is
robust against material variations. Supplementary Section 9 shows
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data for a different material stack, where the PZT thickness is
increased to 100 nm and the bottom electrode is changed from SRO
to La0.7Sr0.3MnO3 (20 nm). A similar negative capacitance transient
is observed.

The addition of a series resistance (R) is critically important
in revealing the negative capacitance region in the dynamics. An
appreciable voltage drop across the series resistance R allows the
voltage across the ferroelectric capacitor to be measured without
being completely dominated by the source voltage—in the limit
when R→0, the voltmeter would be directly connected across the
voltage source. Indeed, most model studies18,21–23 have been done in
the latter limit where the ferroelectric capacitor is directly connected
across a voltage source (or through a small resistance). Note that
the dynamics in our experiments is intentionally slowed down
by adding a large series resistance. The duration of the negative
capacitance transient can be probed by varying the value of the
series resistance and is found to be less than 20 ns for the given PZT
thickness and electrode size (Supplementary Section 7).

A negative slope in the polarization–voltage characteristic
has been predicted since the early days of ferroelectricity16–20.
An S-like polarization–voltage behaviour in one branch of the
hysteresis has been measured in a transistor structure13. However,
a successful measurement of the entire intrinsic hysteresis loop
has been performed only indirectly20. In contrast, our results
provide a direct measure of the intrinsic hysteresis and negative
capacitance of the material. Given the size of the capacitor used
(30 µm×30µm), the switching invariably occurs through domain-
mediated mechanisms. Importantly, our results show that, even in
such a domain-mediated switching, a regime of abrupt switching
is present that leads to negative capacitance transience. Thus,
the double-well picture shown in Fig. 1a, which is typically
associated with a single-domain configuration (equation (1)), can
still qualitatively predict the experimental outcome. Interestingly,
from Fig. 2c, it is clear that the negative capacitance ensues in the
initial period of the switching. This indicates that microscopically
abrupt switching events dominate the early part of the dynamics. By
varying the external stimuli, it is also possible to probe the behaviour
of intrinsic parameters such as ρ (Supplementary Section 6) that
govern the ferroelectric switching.

Before concluding, it is worth noting that the concept of negative
capacitance goes beyond the ferroelectric hysteresis and can be
applied in general to a two-state system separated by an intrinsic
barrier (stored energy)24–28. The measurement presented here could
provide a generic way to probe the intrinsic negative capacitance
in all such systems. A robust measurement of the negative
capacitance could provide a guideline for stabilization, which could
then overcome Boltzmann Tyranny in field-effect transistors, as
mentioned earlier. The inductance-like behaviour observed in this
experiment could also lead to many other applications, such as
negating capacitances in an antenna, boosting voltages at various
part of a circuit, developing coil-free resonators and oscillators,
and so on.
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